If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x=83
We move all terms to the left:
4x^2+2x-(83)=0
a = 4; b = 2; c = -83;
Δ = b2-4ac
Δ = 22-4·4·(-83)
Δ = 1332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1332}=\sqrt{36*37}=\sqrt{36}*\sqrt{37}=6\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6\sqrt{37}}{2*4}=\frac{-2-6\sqrt{37}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6\sqrt{37}}{2*4}=\frac{-2+6\sqrt{37}}{8} $
| 4x^2+2=83 | | 5x-15-6x=-1 | | 2^2x+3=72 | | -181-7x=-17x+19 | | 19n-15=20n-22 | | 3z+8=z-18 | | 4x+(x-10)=330 | | 2p-7=3p-12 | | 5(200)+10x=1780 | | 4(x+35)-3(-x+28(=-7 | | 50x+5=100 | | 6x-6.5=4 | | 2h/3+3=7 | | 3=3m4 | | 6(x-56)-(x+42)=84-9(x-112) | | 6x-11+x+5=99 | | 3(x+3)-2(x+2)=2 | | -8+3h=10+5h | | 2(4a-3)=2 | | 10r-7r+18=24 | | 8c+2c+7c=6 | | 5(x+15)=2(x-15) | | -7x+35=14 | | 4(x-6)=2+4x | | 6m-7=7m | | 4x-3=38 | | x-4(x+6)=3 | | 5+7m=25+2m | | 3/8x=13/2 | | 4^x-2^x=56 | | 5x+2(3x+5)=21 | | x-5.20=-18.73 |